
Monte Carlo Search Tree Ticket to Ride Agent

Caleb Johnson
Artificial Intelligence

Salt Lake City, UT
calebdeejohnson@gmail.com

Introduction
For my project, I decided to design a Monte Carlo Tree Search
agent to play the game Ticket to Ride. The basis of the game
is to build trains, finish routes, and compete to see who can
achieve the highest score. I spent about 20 hours on the project,
with about 3 spent doing initial research, about 8 being setting
up the platform and code base to just be able to play Ticket to
Ride/making an evaluation function, etc. The rest of the time
was spent creating different agents. A lot of prototyping was
done on how fleshed out to make the game and we reverted
back. I then explored a couple of different agents that will be
discussed in the paper.

Game Simplifications
For the purpose of this project, I made the following simplifi-
cations to the traditional game of Ticket to Ride. In essence, I
have completely changed much of the core of the game, how-
ever we maintain the goal of route building and having the
longest acyclic “line”.

• There is no drawing of cards and all lines between two cities
have the same cost. At each turn you simply choose to build
a line between two connected cities. In the future I would

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

want to make an exploitation / exploration aspect where you
either draw or play, but for the scope of this project I was
not able to.

• You simply get assigned your longest route and shorter
routes randomly and do not get a choice over what they are.
I hope to fix this later but again, and should genuinely not
be too hard, but for this project, that is what I decided upon.

• I only included a little over half of the possible cities and
routes from the European version of ticket to ride. I tried
adding them all, but the state space became too larger to run
and test reasonably on my old MacBook Pro.

• There is no way to build stations to help connect routes that
you were too slow on.

Score Evaluation
I explored two different ways of determining my reward for
my Monte Carlo Tree Search rollouts, one in which the agent
tried to simply maximize its own final score and one where
the agent was competing in an adversarial sense to “win” the
game. Score maximization seemed to be the closest to how the
real game plays out among amateur users, but I will describe
how I did my set up for both types

• Score maximization: In this case I ran the rollout until there
were fewer free available routes than there were players
(which departs from the game a bit, but allowed me to nor-
malize the number of turns for everyone). I then tabulated
the agent’s score using a depth first search function to deter-
mine if they completed each route and add the values for all
completed routes (I ignored negative values for failed routes
because I have not set up a route selection interface yet).
Because we are operating with no longer of the opponents
placements for this I did not try to calculate the longest
route.

• For this evaluation, I did my rollout for each state until
the board was full was again, but this time the reward for
the MCTS agent was simply a (+1) if the agent won, a
(-1) if the agent lost to any of the players, and (0) for a
tie (my simplified model without trains being counted at
the end increased the chance of ties). For this agent, I
created another depth-first search function that determined
the longest acyclic route that a user finished and awarded
(+7) for it (I decreased the value slightly because of the
score simplification made it a bit too powerful).

10.1145/1235


Conclusion
I was able to obtain results and my MCTS agent was able to
out-perform random agents that simply randomly chose an
available route quite often. I was still able to beat the agent
nearly every time, but I truly believe that really my only limi-
tation was computation power as even with the drastically re-
duced route space of 47, my agent took a long time and forced
me to set a low iteration value. One of my main takeaways
was how enterprising these solutions can be the first time. I
read the paper and watched the documentary on AlphaGo and
have seen write-ups for DeepBlue, and the computation they
use is jaw dropping. They there after get optimized like crazy,
but I definitely see why the initial choice is to throw all the
computation power at it. If I were to do this again, I would
really commit I suppose. I had a time restraint with other
classes and projects that prevented me from being able to see
how far I can take it.


