
University of Utah
School of Computing
CS6350 - Machine Learning

Final Competitive Project
Caleb Johnson

1 Dataset Overview

For this project, we are attempting to properly predict whether a person makes over $50,000 annually based
on a number of features. These features include [age, working class, education, education number, marital
status, occupation, relationship, race, sex, capital gain, and capital loss. Our output label is simply a binary
classification for whether or not that individual made over $50,000.

We are provided both a training set and a testing test, with the training set having 20,000 data instances
while the test set has 23,842 instances. The data is overwhelmingly clean, with few instances of missing or
corrupted data.

2 Exploratory Data Analysis

To begin with, I wanted to take a look at some of the features, and get an idea of some of their behaviors
before we do any preprocessing and feature engineering. We have 14 features, of which we have a mix of
continuous and categorical variables.

One quick observation that help us is to look at the heatmap of the correlations between all features in
our dataset. This will give us an idea of the co-occurence between variables that may affect our analysis.
This heatmap can be seen in Figure 1.

3 Data Preprocessing and Feature Engineering

Our feature space contains a mixture of both categorical and continuous datatypes. For our use with sklearn
models, we are going to need to encode our categorical variables into a more numerical input that the models
can compare. To do this, I employed the LabelEncoder method from the preprocessing library within sklearn.

Additionally, our EDA gave us some insight into the correlation between features we have. For instance,
relationship and sex demonstrated considerable correlation, which is understandable as relationship was pre-
dominately labeled as ”husband” or ”wife”. Removing these features would likely help reduce cooccurance.
Additionally, and we will discuss this later in the paper, we can consider how engineering new features to
replace current features could be beneficial. Currently, capital gain and capital loss appear to be similar

1



Figure 1: Feature Correlation Heatmap

continuous labels that could be combined. Education also appears to be much less influential that education
number. We could consider removing this feature to maximize our classification.

Additionally, we had 1,848 rows that contained an unknown attribute, denoted as ”?”. Given our large sample
size of 25,000, I decided to first try removing all of these rows from the dataset. This gave us a dataset now
of just over 23,000 instances which seemed satisfactory for training purposes. When I ran the models below
with this subset, I noticed that results seemed largely the same. I also tried replacing each ”?” value with
the mode response for this column. Overall this seemed to very slightly improve my results but not by a
very large factor. I wasn’t able to try nearest neighbor classifications, but I will discuss my ideas for that
possibility in the future works section.

4 Model Cross-Validation

The first thing I attempted to do was to run a k-folds cross-validation on an assortment of models with no
hyperparameter tuning. This method provides insight into the performance of a variety of machine learing
models and gave me a baseline for which models appears to be handling this classifaction problem the best.
The models that I selected to test were Naive Bayes, Logistic Regression, k-Nearest Neighbors, Random
Forest, Decision Tree, and Support Vector. I am including the results from these different models in table 1.

5 Model 1: Logistic Regression

Simply based on my knowledge of logistic regression, and knowing its abilities as a binary classifier, it was
the first model I tried to fit with the data. This was despite middling performance on our k-folds cross-
validation, where it was outperformed by both Naive Bayes and Random Forest.

Similar to linear regression, logistic regression is a predictive analysis. It attempts to describe the relation-

2



k-Folds Cross-Validation Model Performance
Model Accuracy
Naive Bayes 0.8230
Logistic Regression 0.8117
kNN 0.7683
Random Forest 0.8589
Decision Tree 0.8063
Support Vector 0.7649

Table 1: Cross-Validation

ship between our dependent binary label (whether someone makes over 50K) and our independent variables
(such as age and education level). The model applies a logistic function to linear model that allows us to
achieve our binary classification. After implementing the model, we received very middling results. Testing
on our split training set, we received accuracies still in the high 70%s. Finally, when I attempted to submit
the results to Kaggle, we achieved an accuracy of only 0.7851.

In total, I question the Logistic Regression’s utility when our submission outputs are probabilities com-
pared to labels. I chose it as my first model, simply based on my inherent understanding of its underlying
functions, despite not expecting to receive the greatest results.

6 Model 2: Random Forest

The second model that I chose to fit with the data was a random forest classifier. A random forest is a bagging
ensemble model that leverages many unique decision trees. Each decision tree is build using a randomized
subset of the feature space at each level. At these levels, the decision tree still splits on the feature that
provides the most information gain, however the variability in feature space subsets allow for less overlap
between trees in the ensemble.

6.1 Basic Model

I first attempted to fit the random forest model with default hyper parameter settings and without any feature
engineering being performed. This was to provide me with a baseline for expectations, and receive cursory
results to help me move forward with. When we scored our split training set, we received accuracy of around
86%, and our submitted probabilities received a score of 0.90329.

6.2 Hyperparameter Tuning and Feature Engineering

In an effort to improve our random forest model, I performed a grid search cross-validation over the hyper-
parameter input space. The model was run hundreds of times with different combinations of input values.
After running for an extended period of time, the hyperparameter configuration that performed the best can
be seen in Table 2.

In addition, I decided to run the model on a reduced and modified feature space. After looking at the

3



Grid Search Cross-Validation Best Parameters
Hyperparameter Best Configuration
n estimators 2000
min samples split 2
min samples lea f 2
max f eatures ”sqrt”
max depth 20
bootstrap True

Table 2: Cross-Validation

correlation heatmap and comparing their labeling, I decided that relationship and sex didn’t provide much
insight, especially when taking into account marital status. For instance, relationship was labeled predom-
inately as ”husband” or ”wife”, both of which are handled well by both sex and marital status. Likewise, I
decided to combine the capital gain and capital loss values into capital total. My first thought was to instead
create a capital.net feature, but I decided that both capital gain and capital loss implied assets. Though their
real-estate or investments may be losing value, I still felt that their possession implied a higher earning value.

Finally, when I ran the random forest classifier with the specified hyperparameter space and my engineered
feature space, I received a score on Kaggle of just under 91.2%. This has been by far the best results that I
have been able to achieve on my submission, though I do wonder why some of my models are falling behind.
Below you can see the ROC plot for our random forest classifier, which had an area under the curve score of
0.88.

4



7 Model 3: Perceptron Variations

The third model that I tried to explore were different variations of the perceptron model that we designed
in class. I got fairly comparable accuracies with both the standard and the max vote variations, of about
83% with my test data. Additionally, I tried fitting SKLearn’s Multilayer Perceptron implementation and got
similar results with minimal hyperparameter tuning.

8 Future Plans

I still have many different ideas and implementations that I want to explore. Firstly, I think I can do a lot
better data processing to really maximize my results. Unknown datapoints have been one of the largest areas
of interest for me throughout this project, and I have already tried two different techniques for handling them.
First, I tried removing all row instances that contained unknown values, but this seemed to have a negligible
effect in either direction for our analysis. Second, I tried to take the mode classification of the column that it
appears in, which had slight effects but they didn’t seem to be drastic. In the future, I would like to consider
a nearest neighbor approach, where I find the K (defined perhaps as 5) most similar instances to the row with
the unknown label, and then take the mode classification of this nearest neighbor set. I believe this would
allow us to get a more nuanced value for these unknown instances, by looking at the most similar neighbors.

Additionally, I want to better understand why some of my more complex models are not performing bet-
ter, such as SKLearn’s Multilayer Perceptron and XGBoost. My testing scores when I run locally seem to
be reasonable, however when I submit my predictions on Kaggle my scores seem to hover around the 75%
mark, far below what I am expected them to be.

9 Code

All code can be found at the following GitHub repository. It was written in Python using Jupyter notebooks.
https://github.com/Calebdee/CS6350-FinalProject

5


	Dataset Overview
	Exploratory Data Analysis
	Data Preprocessing and Feature Engineering
	Model Cross-Validation
	Model 1: Logistic Regression
	Model 2: Random Forest
	Basic Model
	Hyperparameter Tuning and Feature Engineering

	Model 3: Perceptron Variations
	Future Plans
	Code

