
Caleb Johnson
CS 312

Project 5
Traveling Salesperson

1. Code included at the end to improve readability

2. Complexities
Greedy Algorithm

Overall Time Complexity: O(n^2)
Overall Space Complexity: O(n)
BSSF Initialization

Time: Constant
Space: O(n) - stores each city

Branch-and-Bound Algorithm
Overall Time Complexity: O(2^n *n^2) for worst case, but closer to O(n^2 * k), where k

is the total number of states checked, on average
Overall Space Complexity: O(n^2)

Priority Queue - I used the provided heapq Python function
Time: O(log(n)) for both heappush and heappop as it reheapifies cities
Space: O(n)

BSSF Initialization - This is equivalent to the greedy algorithm’s runtime.
Time: O(n^2)
Space: O(n)

Reduced Cost Matrix
Time: O(n^2)
Space: O(n^2)

3. Data Structures for States
I utilized an increasingly incremented integer value to help me keep a tally of all created states
as I went, with a separate variable that I also incremented for pruned states. I used a reduced
matrix (implemented using numpy) to explore relative costs and see if there are more nodes to
explore/prune. This took (n^2) time and space.

4. Priority Queue Data Structure
I used the provided heapq package for my priority queue instantiation. Heapq is a binary heap
package that allows us to use push and pop functions that will re-heapify to provide us with
priority queue capabilities.

5. Initial BSSF
For my branch-and-bound algorithm, I used the result of my greedy algorithm to select my initial
best solution so far. For relatively small city numbers, our greedy algorithm will run very quickly,
and provides us a much better starting point than a random solution might.

6. Results Table

Scenario Greedy Branch-and-Bound

Numher
of

Cities
Seed Difficulty Time Length Runtime

Cost
Best
Tour

*Optimal

Max #
Stored
States

#
BSSF

Updates

#
Total
Staes

#
Total

Pruned
States

15 20 Hard 0.007 11,081 10.80 9,836* 44 21 15,785 12,829

16 902 Hard 0.007 11,654 58.23 8,051* 60 48 73,557 61,450

18 34 Hard 0.011 10,992 60 9,774 86 8 69,203 56,422

17 1 Hard 0.006 11,747 60 11,636 47 3 76,234 64,979

22 1410 Hard 0.016 13,106 60 15,181 97 0 60,546 52,754

11 1969 Hard 0.004 8,920 1.27 9,110* 19 14 869 638

14 24 Hard 0.007 9,998 6.69 8,716* 31 10 9,922 8,270

18 8 Hard 0.008 12,833 60 12,430 83 6 72,807 60,142

19 19 Hard 0.008 10,730 60 10,301 77 7 67,339 57,674

12 9 Hard 0.002 11,290 2.23 8,649* 33 29 3,660 2,766

7. Analysis of Report Table
We seem to observe a factorial increase in states as we increase our city allotment, which is
understandable with our worst case time complexity. Total states increase drastically as we
increase the city allotment as is expected. We are able to find different solutions and update our
BSSF with small city sizes, and on some large counties we were not able to update at all.

One fascinating take-away for me is still the overall variability in the data based on the number
of cities. This is likely just due to random chance and the fact that our initial state provided by
our greedy algorithm is so important, but it is still surprising to see relatively small total states for
our 22-city scenario compared to other lesser city count scenarios.

