
Real-Time Twitter Opinion Retrieval and Querying

Caleb Johnson
Information Retrieval

Salt Lake City, UT
calebdeejohnson@gmail.com

Introduction
Twitter is a social media networking application with millions
of concurrent users. It stands as a meeting place and
cross-section for opinions, confessions, and musings, with
an average of 500 million new tweets sent out each day. The
application can give us a rough snapshot of the hivemind, and
I am curious in exploring these results.

In this project, I am creating a retrieval system that
will first build a novel, real-time corpus of tweets reflecting
the current state of opinions on the site. Then I will process
the data, classify each tweets by multiple metrics, and then
build an inverted index for querying. Users will be able to
query key terms and retrieve a ranked list of matching tweets
to their query, as well as apply filtering on the results based
upon emotion, sentiment, length, and more. This general
pipeline is represented below and will be discussed throughout
this paper.

Motivation
Emotion and opinion analysis is a vital part of marketing and
analytics for firms and individuals alike. Being able to see
what people are saying and feeling about keywords in real-time
can be both educational and critical for fast-paced industries.

This could answer questions such as "What emotions are peo-
ple feeling about Apple’s ongoing press release" by building
the corpus as the presentation is in progress, and then querying

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

by key word’s "Apple, MacBook, Event" . This would allow
us to observe the emotions Twitter users are feeling in the
moment in regards to this. It could also be used for something
as simple as to see how people are feeling about dogs at a
certain point of the day.

Novelty and Related Work
Analysis of Twitter data is a frequent area of research, as it is
one of the most data-rich environments available to people.
However, I couldn’t find any literature relating to creating
a novel dataset for querying to gain insight into current
discussion topics.

Emotion classification of Twitter tweets is also a com-
mon area of research, and there has been some work done
in real-time analysis. In Rik Van de Walle and Sofie Van
Hoecke’s work they write a chapter entitled A Learning Based
Approach for Real-Time Emotion Classification of Tweets
which I referenced for building my emotion classification
model in PyTorch [1].

Data Collection
This project will employ novel, real-time datasets constructed
each time the application is run. Utilizing the Twitter API
with developer credentials, we will stream a set number of
tweets to create this dataset when the application is run. The
user will provide a corpus size, with a default size of 1,000,
and our streamer will run until this quantity is achieved. My
current Twitter developer credentials allow me to stream
200,000 tweets in a single stream, so given my limitations that
is the maximum size of the corpus.

After we have streamed our desired number of tweets, we will
pass each tweet through a trained emotion neural network that
will provide us with a multi-class label for each tweet. We will
then go through the steps of processing our data: first removing
stop words, then normalizing, then intelligently lemmatizing
our text for each tweet. Finally, we will tokenize each tweet so
that we have a list that we can iterate through. Once we have
finished our pre-processing steps, we will create an inverted
index, where we have a dictionary, with each observed word
as a key and then an index to each tweet that contains that
keyed word as a part of a list of tweets. This step will allow us
to quickly build a list of tweets that match one of the keywords
in our queries, which will speed up our query times when we
run the model later.

10.1145/1235

Experimental Design
After formulation of the dataset, users are able to query the
corpus to see current opinions on different topics. Users will be
able to provide keywords that they would like to query by, as
well as further filtering terms for their results such as emotion
type and tweet length. We will be able to use our inverted index
to pull all the tweets that matched one or more of the keywords
in our query. We will then create a relevance ranking that will
be used to order the matching tweets in the display for the
user, and to do this we will compute a query likelihood value
for each tweet that matched a term in our query. Equation
1 shows the basic formula for the query likelihood function,
which will use a basic maximum likelihood estimation to give
each document a score.

∑
p(t|θd)

log(p(t|θd)) (1)

The corpus created at the application’s run-time will have very
variable sizes, and will definitely not be representative of all
the concepts the user may be querying on. To account for
potential zero probability concerns while computing the query
likelihood, we will employ Dirichlet Smoothing (see equation
2). This smoothing function will find both the pMLE for the
term in the retrieved tweet as well as the corpus as a whole. It
will weigh these two likelihoods by the size of the retrieved
tweet and also provide a slight bias term λ to further prevent
zero probability problems if the term still doesn’t appear in
our corpus. After tuning, I have assigned the hyperparameter
µ a value of 5, which is about the standard deviation for words
in a tweet.

p(t|θd) =
|d|

|d|+µ
pMLE(t|d)+

µ

|d|+µ
pMLE(t|C) (2)

Results
After the model has computed the query log likelihood score
for each tweet that contained one of the keywords, they are
ordered by their score. For simplicity, we display the top ten
matching tweets to the user. An example for how this may
look can be seen below in Example Query: Biden Kennedy
Center Honors.

The Kennedy Center Honors was an event that was go-
ing on while I built my dataset on December 5, 2021. In
the event, Joe Biden made an unexpected appearance that
made headlines, as a president hadn’t attended the event in

four years. Looking at the top five results included below,
we see that our model was able to grab events that very
closely reflected what we were looking for. In total, 95 tweets
included one of the key words "Biden", "Kennedy", "Center",
and "Honors", though our model provided a ranking that
seemed to closely reflect the most relevant examples.

The pie charts above show the emotion profiles of our matched
tweets, the first being all 95 matched tweets, while the second
shows only our ten most relevant tweets from our query log
likelihood ranking. Four out of the top five tweets by this
ranking were classified as happy, and eight of the top ten
overall. When we look at the entire set of matched tweets,
however, our profile gets much wider. Among all tweets,
angry overtakes happy as the predominant emotion. This
helps us to see that Twitter users are feeling relatively happy
about Biden’s appearance at the Kennedy Center Honors
event, however, the wider community has much more varied
opinions about him in general.

A second example can be seen above in Omicron Variant
Coronavirus Covid. In this example, we were querying for
something a bit more broad that wasn’t attached to a single
ongoing current event. One decision choice is highlighted in
this example as we see the top two tweets in our ranking are
retweets of the same tweet. I ultimately decided to include
retweets, though the decision could well be made to not
include them in our dataset formulation.

Evaluation
As we are generating a novel dataset on each run of our
application, we have no ground truth to compare our model’s
ordering against. While our orderings may have seemed
reasonable to us, we wanted to have a way to evaluate their
quality. To do this, I used normalized discounted cumulative
gain.

Discounted cumulative gain is a metric to evaluate an
orderings performance given relevance labels. In regards
to our model, our query log likelihood function provided
relevance outputs that we used to order our tweets and return
them. To evaluate our model, however, we needed actual
labeled data to check.

I ran 10 different queries without seeing the query-log
likelihood ordering. The model used our inverted index to
return every tweet that included one of keywords from the
query. I then hand labeled them based off how I perceived the
relevance of the tweet given the query using a 5-level system.
Finally, I used these labels to compute our models discounted
cumulative gain, the ideal discounted cumulative gain, and
lastly report our normalized discounted cumulative gain for
each query. In regards to calculating DCG as well, I only
used the ten most relevant tweets (for our model, the ten most
relevant tweets from the query log likelihood calculation).

Above we have two query examples, both of which
were trending topics on Twitter that afternoon. The first
query was in regards to the University of Oklahoma’s football
team hiring their new head coach, Brent Venables. Our first
example, "RT @espn The Sooners got their guy !! Clemson
DC Brent Venables is Oklahoma’s new head football coach",
is an example of a tweet that received a perfect relevance
score of 5. Likewise, the next example was a tweet that was
only marginally relevant, while the third and final example
held no relevance at all. Our model’s ordering performed very
well, and had a discounted cumulative gain of 14.819, while
the ideal ordering would have been 14.889. This means we an
nDCG score of 0.995.

Another example query was "Steph Stephen Curry Warriors
Basketball NBA", which performed similarly to our first
query. Overall, it had an nDCG of 0.936.

Table 1. nDCGs of the 10 Queries

Query Matches nDCG
Oklahoma Sooners Football Venables 59 0.995
Steph Curry Warriors NBA Basketball 39 0.936
Angela Merkel Retire 28 0.856
Scarlett Johansson Kennedy Center 44 0.903
Vladimir Putin Russia Ukraine 81 0.885
Bob Dole Dies 39 1.000
Omicron Variant Spike Europe 421 0.812
Utah Jazz Rudy Gobert 29 0.936
Christmas Season Shopping 711 0.915
Snow Storm Utah Colorado Wyoming 397 0.894
Average 0.913

The above table shows the ten different queries that we calcu-
lated the discounted cumulative gain for our model, the ideal
DCG, and the normalized DCG for our model’s performance.
When we average the nDCG that we found for all ten queries,
we get an average nDCG value of 0.913.

Conclusion and Future Works
This has been a fascinating project to work through over the
course of the semester. I have been pleased with the results I
have been able to obtain so far, but there are quite a few other
parts I want to explore.

Currently, the query log likelihood function is completely
oblivious to the proximity of the key terms within tweets. It
weights everything equally, which provided interesting results,
however I would like to improve the model by better weight-
ing by context proximity in the model. Consider the query
"Kennedy Center Honors", where two matched tweets are
"John Kennedy was at the center of the politics" and "Kennedy
center was a fantastic experience I must say" are both 9 words
in length, with 1 case of two different key terms. They would
have the same query log likelihood score, but I would like
to give greater preference to tweets where the key terms are
closer together.

One factor that I haven’t been able to properly account for in
my evaluation was inherently ambiguous queries. For instance,
all of my evaluation queries were very specific and this made
it easy to determine whether the matched tweets were relevant
or not. A simple query, such as, "java" would be more difficult
to evaluate, however, because of so many potential meanings.
To get a more robust level of query types to evalaute on as well
we can downlaod a dataset with has relevance labels included.

The model is entirely run from within the command line cur-
rently, however I would like to build out a better interface to
interact with the model in. We output our ranking to a csv that
we have to look through, but I would like to be able to display
them in a GUI.

Appendix - Run Code
The repository can be accessed at
https://github.com/Calebdee/IR-RealTimeTwitterQuery
and cloned to your local machine. The main files

Before you will be able to run the application you will need to
sign up for a free Twitter developer account and generate your
own access tokens. These will then need to be provided in the
twitter_credentials.py file before you will be able to run the
program. Once you have generated your own API tokens, you
will need to first build the dataset by running ./build_model.sh,
and you can further provide the size of the model by providing
it as the following command line argument. For instance, a
corpus size of 50,000 would be ./build_model.sh 50000.

Once the model has finished generating the dataset, you can
run ./query.sh "QUERY TERMS HERE" to search for a given
query. The full ranking of matched tweets can be viewed in
the out.csv file that is generated each time we run our query
script.

Works Cited
[1] Janssens O., de Walle R.V., Hoecke S.V. (2015) A Learn-
ing Based Approach for Real-Time Emotion Classification of
Tweets. In: Kazienko P., Chawla N. (eds) Applications of So-
cial Media and Social Network Analysis. Lecture Notes in So-
cial Networks. Springer, Cham. https://doi.org/10.1007/978-
3-319-19003-7_7

